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ABSTRACT

Geometry is a branch of mathematcs concerned with questions
of shapes, size, relative position of figures and properties of
space. Some general concepts that are fundamental to Geome-
try are points, lines, planes, surfaces, angles, curves as well as
topology or metric.

Analytic geometry also referred to as Coordinate geometry or
Cartesian geometry is the study of geometry using coordinate
system. Analytic geometry is a branch of algebra that is used to
model geometric objects such as points, straight lines and circles
being the best basic of these.

In plane analytic geometry, points are defined as ordered pairs of
numbers, say (x, y), while the straight lines are in turn defined
as the set of points that satisfy linear equation.
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Chapter 1

COORDINATE GEOMETRY

Points on a line can be identified with real numbers to form the
Coordinate line. Similarly, points on a plane can be identified
with ordered pairs of numbers to form the Cartesian plane.
For instance, any point P in the coordinate plane can be located
by a unique ordered pair of numbers (a, b). The first number a
is referred to as the x-coordinate of P and the second number b
is also referred to as the y-coordinate of P .

1.1 Formula for the Distance d(A,B) between

two points A(x1, y1) and B(x2, y2)

Let us consider the right-angled triangle ABC as shown in Fig-
ure 1.1. By using the Pythagoras Theorem1, we obtain

d(A,B)2 = |AC|2 + |BC|2

d(A,B)2 = (x2 − x1)
2 + (y2 − y1)2.

Therefore, the equation for the distance between two points is

d(A,B) =
√

(x2 − x1)2 + (y2 − y1)2. (1.1)

Example 1.1 Which of the points P (−1,−2) or Q(8, 9) is closer
to the point A(3, 5)?

1The Pythagoras theorem : z2 = x2 + y2 where z is the hypotenuse of a right-angled
triangle.
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Figure 1.1: Illustration for the derivation of the distance formula.

Solution

By using the distance formula (1.1), we determine the distances
PA and QA such that

d(P,A) =
√

(3− (−1))2 + (5− (−2))2

=
√

42 + 72

=
√

65,

and

d(Q,A) =
√

(3− 8)2 + (5− 9)2

=
√

(−5)2 + (−4)2

=
√

41.

Since d(Q,A) < d(P,A) we conclude that Q is closer to A.

1.2 Midpoint of a line segment from A(x1, y1)

to B(x2, y2)

Let us consider the Figure 1.2, if M is the midpoint of the line
segment AB, then we have equal distances along the x−coordinate
as follows
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Figure 1.2: Illustration for the derivation of the midpoint formula.

d(A,P ) = d(M,Q).

Therefore, by change of subject, we have

x− x1 = x2 − x
2x = x2 + x1.

Finally, we obtain

x =
x2 + x1

2
.

Also, we have equal distances along the y−coordinate as follows

d(P,M) = d(Q,M).

Therefore, by change of subject, we have

y − y1 = y2 − y
2y = y2 + y1.

Finally, we obtain

y =
y2 + y1

2
.

The mid-point formula for a line segment is thus given by

M

(
x2 + x1

2
,
y2 + y1

2

)
. (1.2)

Example 1.2 Show that the equilateral with vertices P (1, 2), Q(4, 4), R(5, 9)
and S(2, 7) is a parallelogram by proving that its two diagonals
bisect each other.
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Solution

If the two diagonals have the same midpoint, then they must
bisect each other as shown in Figure 1.2. Therefore, using the

Figure 1.3: Illustration of the parallelogram PQRS.

midpoint formula (1.2), we find the midpoint of the diagonal PR
as (

1 + 5

2
,
2 + 9

2

)
=

(
3,

11

2

)
,

and the midpoint of the diagonal QS is given as(
2 + 4

2
,
7 + 4

2

)
=

(
3,

11

2

)
.

Since the coordinates of PR = QS, it implies the two diagonals
bisect each other.

1.3 Gradient of a Line

We consider a triangle ABC with coordinates A(x1, y1), B(x2, y2)
and C(x3, y3) as shown in Figure 1.4.

The Gradient of the line AB is given by AB =
y2 − y1
x2 − x1

.

Also, since we have a right-angled triangle, by using the trigonometic
identities, the gradient of AB can be written as AB = tan θ.
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Figure 1.4: Illustration of the Gradient formula

Relationship Between the Gradients of Parallel Lines

Let two lines L1 and L2 have gradients m1 and m2, respectively.
If L1 and L2 are parallel then m1 = m2, i.e. Parallel lines have
equal gradients.

Relationship Between the Gradients of Perpendicular Lines

If the lines L1 and L2 with gradients m1 and m2 are perpendic-

ular, then m1 ∗m2 = −1 thus m2 = − 1

m1

.

1.4 Equation of a Line

Consider a line through the point A(x1, y1) with gradient m. Let
B(x, y) be any other point on the line as shown in Figure 1.5.

m =
y − y1
x− x1

y − y1 = m(x− x1). (1.3)

Example 1.3 Find the equation of the line through A(1,3) with
gradient 5.
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Figure 1.5: Illustration of the equation of a line.

Solution

Let x1 = 1, y1 = 3, and the gradient m = 5, then by using (1.3),
the equation of the line is given by

y − 3 = 5(x− 1)

y = 5x− 5 + 3 = 5x− 2.

Sometimes the equation of the line is expressed in the form y =
mx + c, in such situations the gradient m of the line is the
coefficient of x.

1.5 Angles Between Two Lines

Consider the lines L1 and L2 with gradients m1 and m2, respec-
tively. Suppose that m1 > m2 > 0.

Observe that there are two distinct angles between L1 and L2.
These angles are θ and (180− θ).

Also, from the figure above,

λ =180− α and λ = 180− β − θ. (1.4)

From (1) and (2), we obtain,

180− α =180− β − θ
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Figure 1.6: Angle between two lines formula.

θ =α− β.

Thus,

tan θ = tan(α− β)

=
tanα− tan β

1 + tanα tan β
.

Therefore,

tan θ =
m1 −m2

1 +m1m2

(1.5)

Also,

tan(180− θ) =
tan 180− tan θ

1 + tan 180 tan θ
= −tanθ

= −
(
m1 −m2

1 +m1m2

)
.

Example 1.4 Find the acute angle θ between the lines y =
2x+ 1 and y = 3x+ 2.
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Solution

Let m1 = 3 and m2 = 2. Then,

tan θ =
m1 −m2

1 +m1m2

=
3− 2

1 + 3(2)
=

1

7

θ = tan−1(0.1429) = 8.1325o.

Example 1.5 A point A(1, 2) is one vertex of a parallelogram
ABCD. Side AB lies on the line 2y = x + 3 and the diagonal
BD lies on the line 3y + x = 17. If |AD| = |BD|. Find the
coordinate of C. Find also the equation of the perpendicular
bisector of AB.

Solution

Figure 1.7: Illustration of Example 1.5.

Let ∠DBA = θ as illustrated in Figure 1.7. We first find the
coordinates of B and D as follows: From 4EAF ,

γ =θ + β

tan γ =tan(θ + β)

=

(
tan θ + tan β

1− tan θ tan β

)
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but tan β =
1

2

Also, from 4EBG

β + 180− θ + 180− α = 180

180− θ = α− β
tan(180− θ) = tan(α− β)

∴ − tan θ =
−1/3− 1/2

1 + (−1/3)(1/2)
=
−5/6

5/6
= −1.

Thus,

tan γ =
1 + 1/2

1− (1)(1/2)
=

3/2

1/2
= 3.

The gradient of AD is 3. Hence, the equation of AD is given by

y − 2 = 3(x− 1)

y = 3x− 1. (1.6)

By simultaneously solving

y = 3x− 1 and x+ 3y = 17,

we obtain y = 5 and x = 2 yielding the point D(2, 5). Also, by
solving

2y = x+ 3 and 3y = −x+ 17,

simultaneously, we obtain y = 4 and x = 5 yielding the point
B(5, 4). Let M be the midpoint of BD and also the midpoint of

AD. Then M is given by M

(
7

2
,
9

2

)
. Next, we find the coordi-

nates of C as follows. Let C be (p, q), then,

1 + p

2
=

7

2
=⇒ p = 6, and

q + 2

2
=

9

2
=⇒ q = 7.
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Hence, the coordinates of C is (6, 7).
Finally, to find the equation of the perpendicular bisector of

AB, we have to find the midpoint of AB, given by

Midpoint of AB =

(
5 + 1

2
,
4 + 2

2

)
= (3, 3).

The gradient of the perpendicular line to AB is m =
−1

1/2
= −2.

Thus, the equation of the perpendicular bisector is

y − 3 =− 2(x− 3)

y =− 2x+ 9.

1.6 Division of a line segment in a given ratio

We will discuss about the internal and external division of line
segment. To find the coordinates of the point dividing the line
segment joining two given points in a given ratio.

1.6.1 Internal Division

Consider the line joining A(x1, y1) and B(x2, y2). Let R(x, y)
divides AB internally in the ratio n : m, as shown in Figure 1.8.

Figure 1.8: Illustration of internal division of a line segment.
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Since triangle ARC and RBD are similar, we proceed as fol-
lows

|AC|
|RD|

=
n

m
x− x1

x2 − x
=
n

m
m(x− x1) = n(x2 − x)

mx−mx1 = nx2 − nx
x(m+ n) = nx2 +mx2

x =
nx2 +mx1

n+m
.

Also,

|RC|
|BD|

=
n

m
y − y1
y2 − y

=
n

m
m(y − y1) = n(y2 − y)

my −my1 = ny2 − ny
y(m+ n) = ny2 +my1

y =
ny2 +my1
m+ n

.

Thus, the coordinates of the point R is

R

(
mx1 + n2

m+ n
,
my1 + ny2
m+ n

)
.

1.6.2 External Division

Suppose the point R divides the line AB externally such that
|AR| : |RB| = −n : m as illustrated in Figure 1.9.

Since triangle ARC and RBD are similar, we have

|RC|
|RD|

=
n

m
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Figure 1.9: Illustration of external division of a line segment.

x1 − x
x2 − x

=
n

m
n(x2 − x) = m(x1 − x)

mx− nx = mx1 − nx2

x(m− n) = mx1 − nx2

∴ x =
mx1 − nx2

m− n
.

Also,

|AC|
|BD|

=
n

m
y1 − y
y2 − y

=
n

m
m(y1 − y) = n(y2 − y)

my1 −my = ny2 − ny
my − ny = my1 − ny2
y(m− n) = my1 − ny2

∴ y =
my1 − ny2
m− n

.

Thus, the coordinates of the point R is

R

(
mx1 − nx2

m− n
,
my1 − ny2
m− n

)
.
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Similarly, if R divides the line AB externally such that |AR| :
|RB| = n : −m then,

R

(
−mx1 + nx2

−m+ n
,
−my1 + ny2
−m+ n

)
.

Example 1.6 Find the points dividing the join of A(1, 2) and
B(3, 1).

a. Internally in the ratio 1 : 2

b. Externally in the ratio −1 : 2

Solution

a. Let (a, b) be the point of internal division. Then

(a, b) =

(
mx1 + nx2

m+ n
,
my1 + ny2
m+ n

)
where n : m = 1 : 2

=

(
2(1) + 1(3)

1 + 2
,
2(2) + 1(1)

1 + 2

)
=

(
5

3
,
5

3

)
.

Therefore, the required point is

(
5

3
,
5

3

)
.

b. Let (p, q) be the point of external division. Then

(p, q) =

(
mx1 − nx2

m− n
,
my1 − ny2
m− n

)
where n : m = −1 : 2

=

(
2(1)− 1(3)

2− 1
,
2(2)− 1(1)

2− 1

)
= (−1, 3).

Thus, the required point is (−1, 3).
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1.7 Distance of a Point from a Line

We consider the distance p of P (x1, y1) from the line ax+by+c =
0. The distance d is given by

|ax1 + by1 + c|√
a2 + b2

= ±ax1 + by1 + c√
a2 + b2

Proof

Consider the illustration in Figure 1.10.

Figure 1.10: Illustration of equation of a point from a line.

Let D denote the point of the perpendicular from P to ax +
by + c = 0. Firstly, we want to find the coordinates of the point
of the perpendicular D. However,

ax+ by + c = 0

y = −a
b
x− c

b
. (1.7)

The gradient of ax + by + c is −a
b
. Since ax + by + c = 0 and

DP are perpendicular, the gradient of

DP = − 1(
− a

b

) =
b

a
.
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Thus, the equation of the line segment DP isgiven by

y − y1 =
b

a
(x− x1).

Now to determine the coordinates of D, we solve

ax+ by + c = 0

y − y1 =
b

a
(x− x1) (1.8)

for x and y. Thus, from (1.8)

y =
b

a
(x− x1) + y1 (1.9)

and from (1.7)

y = −a
b
x− c

b
. (1.10)

Equating (1.9) and (1.10) gives,

b

a
(x− x1) + y1 = −a

b
x− c

b

x

(
b

a
+
a

b

)
=
b

a
x1 − y1 −

c

b

x

(
b2 + a2

ab

)
=
b

a
x1 − y1 −

c

b

x =

(
b

a
x1 − y1 −

c

b

)(
ab

b2 + a2

)

x =
b2x1 − aby1 − ac

a2 + b2
.

Similarly we obtain, y =
a2y1 − abx1 − bc

a2 + b2
. Therefore, the point

D is given by(
b2x1 − aby1 − ac

a2 + b2
,
a2y1 − abx1 − bc

a2 + b2

)
.
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Hence,

|PD|2 =

(
x1 −

b2x1 − aby1 − ac
a2 + b2

)2

+

(
y1 −

a2y1 − abx1 − bc
a2 + b2

)2

=

(
a2x1 + b2x1 − b2x1 + aby1 + ac

a2 + b2

)2

+

(
a2y1 + b2y1 − a2y1 + abx1 + bc

a2 + b2

)2

=

(
a2x1 + aby1 + ac

a2 + b2

)2

+

(
b2y1 + abx1 + bc

a2 + b2

)2

=
a2(ax1 + by1 + c)2 + b2(by1 + ax1 + c)2

(a2 + b2)2

=
(ax1 + by1 + c)2(a2 + b2)

(a2 + b2)2

=
(ax1 + by1 + c)2

a2 + b2
.

Therefore, the distance of the line segment |PD| is given by

|PD| = |ax1 + by1 + c|√
a2 + b2

= ±(ax1 + by1 + c)√
a2 + b2

. (1.11)

Example 1.7 Find the distance of P (3, 2) from the line with
equation 12x+ 5y − 11 = 0.

Solution

From the equation a = 12, b = 5 and c = −1. Thus,

Distance(d) =
|ax1 + by1 + c|√

a2 + b2
=
|12(5) + 5(2)− 11√

122 + 52
=

35

13
.

Example 1.8 Find the set P of points which are at a distance√
5 from the line 2x− y − 4 = 0.
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Solution

Let (h, k) be an arbitrary point in the set P . Then the distance
of (h, k) to the line 2x− y − 4 = 0 is

√
5 =

|2h− k − 4|√
22 + (−1)2

= ±(2h− k − 4)√
5

±5 = ±(2h− k − 4)

Thus,

2h− k − 4 = 5 and 2h− k − 9 = 0,

and

2h− k − 4 = −5 and 2h− k + 1 = 0.

Replacing h and k with x and y respectively gives,

2x− y − 9 = 0 and 2x− y + 1 = 0.

Thus, P consist of the set of points from the lines

2x− y − 9 = 0 and 2x− y + 1 = 0.

1.8 Equations of Bisectors of Angles Between

Two Lines

Consider the lines L1 and L2. Let B1 and B2 denote the bisectors
of the angles between L1 and L2. B1 and B2 form the locus of
points equidistant from L1 and L2. Also, B1 is perpendicular to
B2, as shown in Figure 1.11.

Example 1.9 Find the equation of the lines which bisect the
angles between the lines x+ y + 2 = 0 and x+ 7y + 26 = 0.
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Figure 1.11: Illustration of equation of bisectors of angles between two lines

Solution

Let (x, y) denote any point on any of the bisector. Then (x, y)
is equidistant from two lines.

|x+ y + 2|√
12 + 12

=
|x+ 7y + 26|√

12 + 72

|x+ y + 2|√
2

=
|x+ 7y + 26|√

50

|x+ y + 2| =
√

2

5
√

2
|x+ 7y + 26|

|x+ y + 2| = 1

5
|x+ 7y + 26|

(x+ y + 2) = ±1

5
(x+ 7y + 26).

Considering the positive part, we have

(x+ y + 2) =
1

5
(x+ 7y + 26)

5x+ 5y + 10 = x+ 7y + 26

4x− 2y − 16 = 0.

Finally, the negative part yields

(x+ y + 2) = −1

5
(x+ 7y + 26)
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5x+ 5y + 10 = −x− 7y − 26

6x+ 12y + 36 = 0.

1.9 Exercises

Students must endeavour to solve all exercises.

1. Given A(-3,5) and B(5,-10). Find ;

(a) the distance AB

(b) the midpoint P of AB

(c) the point Q that divides AB in the ratio 2:5

(d) the point R that divides AB in the ratio 3:1 externally.

(e) the slope of AB

(f) the equation of the line AB

(g) the equation of the perpendicular bisector of AB

(h) the perpendicular distance from S(2,4) to AB.

2. Find all the values of r such that the slope of the line through
the points (r, 4) and (1, 3− 2r) is less than 5.

3. Suppose M is the midpoint of AB, where A is (2,3) and B
is (18,20). Also, if P divides AB internally and Q divides
AB externally in the ratio 2:3. Show that |MP | · |MQ| =
|MB|2.

4. The equation of two sides of a parallelogram are y − x = 2
and 2x + y = 4. Find the equations of the other sides if
they intersect at the point (0,−4).

5. Find the gradient of the lines joining the following points;

(a) (cp, c
p
), (cq, c

q
).

(b) (ap2, 2ap), (aq2, 2aq).

(c) (a cos θ, b sin θ), (a cosφ, b sinφ).
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6. Find the equation of the line with x-intercept 3 and y-
intercept -5.

7. Find the equation of the line parallel to the x-axis which
passes through the point where the lines 4x + 3y − 6 = 0
and x− 2y − 7 = 0 meet.

8. Find the equation of the line passes through the point (2, 3)
and the point of intersection of the lines 3x + 2y = 2 and
4x+ 3y = 7.

9. Given the line l with equation ax+ by+ c = 0 and the point
P (x1, y1).

(a) Show that the line through P parallel to l is given by
ax+ by = ax1 − ay1.

(b) Show that the line through P perpendicular to l is given
by bx− ay = bx1 − ay1.

10. If A(−2, 1), B(2, 3) and C(−2,−4) are three points;

(a) find the angles between the straight lines AB and BC.

(b) determine whether A,B and C are collinear.

11. At what angle are the lines ax+ by + c = 0 and (a− b)x+
(a+ b)y+ d = 0, a > 0, b > 0, c > 0 inclined to each other?

12. One side of a square lies along the straight line 4x+3y = 26.
The diagonals of the square intersect at the point (−2, 3).
Find;

(a) the coordinates of the vertices of the square.

(b) the equation of the sides of the square which are per-
pendicular to the given line.

13. Find the sum of the x and y intercepts of any tangent line
to the curve

√
x+
√
y =
√
k
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CIRCLES

A circle is the locus of a point P (x, y) which moves such that
it is at a constant distance from a fixed point. The constant
distance is the radius, r, and the fixed point is the centre, c, as
shown in Figure 2.1.

Figure 2.1: Illustration of circle with center C and a point P.

Let P (x, y) be any point on the circle. Then

|CP | = r√
(x− a)2 + (y − b)2 = r

|CP |2 = r2

(x− a)2 + (y − b)2 = r2 (2.1)

x2 + y2 − 2ax− 2by = a2 + b2 − r2 = 0.

31
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Let −a = g,−b = f and a2 + b2 − r2 = c,

x2 + y2 + 2gx+ 2fy + c = 0. (2.2)

Thus given an equation of a circle in the form of (2.2), the
centre is given by (−g,−f) and the radius is

r =
√
a2 + b2 − c =

√
g2 + f 2 − c.

2.1 Properties of the equation of a circle

The equation of the circle (2.2) has perculiar properties as fol-
lows;

1. The coefficients of x2 and y2 are equal

2. There is no term in xy

3. The degrees of expressions in x and y is 2.

Example 2.1 Find the centre and radius of the circle

x2 + y2 + 3x− 6y − 1 = 0. (2.3)

Solution

Comparing the equation (2.3) with equation (2.2), we have 2g =
3 and 2f = 6 that yields g = 3

2
and f = −3, respectively. Thus,

the centre is given by

(
− 3

2
, 3

)
. The radius, r, is given by

r =

√√√√(3

2

)2

+ (−3)2 + 1 =

√
9

4
+ 10 =

√
49

4
=

7

2
.

2.2 Equation of a circle through the origin

If x2 + y2 + 2gx+ 2fy+ c = 0 passes through the origin O(0, 0),
then c = 0. Thus the equation of the circle through the origin is
of the form x2 + y2 + 2gx+ 2fy = 0.
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2.3 Equation of a circle on a given diameter

Let us consider figure 2.2. Suppose P1 and P2 are the end points

Figure 2.2: Equation of a circle on a diameter.

of the diameter P1P2. Let P (x, y) be any point on the circle such
that ∠ P1PP2 = 90o. Thus, PP1 is perpendicular to PP2 and
yields (

y − y1
x− x1

)(
y − y2
x− x2

)
= −1

(x− x1)(x− x2) + (y − y1)(y − y2) = 0.

Method 2

Find C, the midpoint of P1P2, we then have the circle with centre

C and radius r =| P1C |=| CP2 |=
1

2
| P1P2 |.

Example 2.2 Suppose that A(10, 2) and B(3, 8) are two points
in the xy plane. Find the equation of the circle on AB as diam-
eter.

Solution

Let P (x, y) be any point on the circle such that ∠APB = 90o.
Thus,AP is perpendicular to BP .
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(
y − 2

x− 10

)(
y − 8

x− 3

)
= −1

(x− 10)(x− 3) + (y − 2)(y − 8) = 0

x2 + y2 − 13x− 10y + 46 = 0.

Method 2

The Midpoint of AB is

(
10 + 3

2
,
2 + 8

2

)
=

(
13

2
, 5

)
. Thus, the

centre of the circle is

(
13

2
, 5

)
. The radius is given by

r =

√√√√(13

2
− 3

)2

+ (5− 8)2 =

√
49

4
+ 9 =

√
85

4

The equation of the circle is(
x− 13

2

)2

+ (y − 5)2 =

(√
85

4

)2

(
x− 13

2

)2

+ (y − 5)2 =

(
85

4

)
x2 + y2 − 13x− 10y + 46 = 0.

2.3.1 Equation of a circle through 3 points

Consider the circle through 3 points P1(x1, y1),P2(x2, y2) and P3(x3, y3).

Derivation Steps

1. Assume the equation of the circle is x2+y2+2gx+2fy+c =
0.
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2. Substitute the coordinates of P1,P2 and P3 in turn, in (1) to
obtain 3 equations in g, f and c.

3. Solve the three 3 equations for g, f and c.

4. Write the equation of the circle.

Example 2.3 Find the equation of the circle through the points
(2, 1),(0, 2) and (1, 0).

Solution

Let the equation of the circle be given by

x2 + y2 + 2gx+ 2fy + c = 0 (2.4)

Substituting (2, 1) into (2.4) gives

4 + 1 + 4g + 2f + c = 0

5 + 4g + 2g + c = 0. (2.5)

Also, substituting (0, 2) into (2.4) gives

4 + 4f + c = 0 (2.6)

Finally, substituting (1, 0) into (2.4) gives

1 + 2g + c = 0 (2.7)

(2.6)− (2.5) gives

−1− 4g + 2f = 0

4g − 2f = −1. (2.8)

(2.5)− (2.7) gives

4 + 2g + 2f = 0

2g + 2f = −4 (2.9)

(2.8) + (2.9) gives

6g = −5, g = −5

6
and 2f = −7

3
thus f = −7

6
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From (2.7), we obtain

1− 5

3
+ c = 0 thus c =

2

3
.

Hence, the required equation is

x2 + y2 + 2

(
−5

6

)
x+ 2

(
−7

6

)
y +

2

3
= 0

x2 + y2 − 5

3
x− 7

3
y +

2

3
= 0.

2.4 Intersection of a circle and a line

Consider the intersection of the line y = mx+ c1 and the circle
x2 + y2 + 2gx + 2fy + c2 = 0. In the proceeding diagrams, we
illustrate all the possible cases.

Case 1

There are 2 distinct points of intersection. Geometrically, |CD| <
r as shown in Figure 2.3.

Figure 2.3: Two (2) distinct points of intersection.
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Case 2

There is one point of intersection. Geometrically, |CD| = r as
shown in Figure 2.4.

Figure 2.4: One point of intersection.

Case 3

There is no point of intersection. Geometrically, |CD| > r as
shown in Figure 2.5.

Figure 2.5: No point of intersection.

Algebraically, let

y = mx+ c1, (2.10)
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and

x2 + y2 + 2gx+ 2fy + c = 0. (2.11)

Since the points of intersection lie on both the line and the circle,
they will be given by the solutions of (2.10) and (2.11) considered
as simultaneous equations in x and y. Substituting (2.10) into
(2.11) gives

x2 + (mx+ c1)
2 + 2gx+ 2f(mx+ c1) + c2 = 0

x2(1 +m2) + 2x(g +mf +mc1) + c21 + 2fc1 + c2 = 0. (2.12)

The equation (2.12) is a quadratic equation in x and will give
two values for x, and from equation (2.10) the two corresponding
values for y are found. The points of intersection will be repeated
(i.e, the line will be a tangent) if the roots of equation (2.12) are
repeated. The condition for this is

(2(g +mf +mc1)
2)2 = 4(1 +m2)(c2 + 2fc1 + c2)

(2(g +mf +mc1)
2)2 = (1 +m2)(c2 + 2fc1 + c2).

Also, the points of intersection will be distinct if

(2(g +mf +mc1)
2)2 > 4(1 +m2)(c2 + 2fc1 + c2),

moreover, there is no point of intersection if

(2(g +mf +mc1)
2)2 < 4(1 +m2)(c2 + 2fc1 + c2).

Example 2.4 Prove that the line y = mx+ c is tangent to the
circle x2 + y2 = 25 if c2 = 25(1 +m2).

Solution

Substituting y = mx+ c into x2 + y2 = 25 gives,

x2 + (mx+ c)2 = 25

x2 +m2x2 + 2mxc+ c2 = 25

x2(1 +m2) + 2mcx+ c2 − 25 = 0.
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For tangency,

(2mc)2 − 4(1 +m2)(c2 − 25) = 0

4m2c2 − 4(c2 − 25 +m2c2 − 25m2) = 0

−c2 + 25 + 25m2 = 0

c2 = 25(1 +m2).

2.5 Intersecting Circles

Consider two circle with radii r1 and r2, r1 > r2 with centres
apart. Then the circles can intersect as follows:

1. Circles touch externally : d = r1 + r2

2. Circles touch internally : d = r1 − r2

3. Circles do not touch each other : d > r1 + r2

4. Circles do not touch each other : d < r1 − r2
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2.5.1 Circles intersecting at two distinct points

1. d < r1 + r2

2. d2 = r21 + r22

3. r1 > r2

2.5.2 Equation of the common chord

Given that

s1 : x2 + y2 + 2gx+ 2fy + c = 0,

s2 : x2 + y2 + 2gx+ 2fy + c1 = 0.
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The equation of the common chord is given by

S1 = S2 or S1 − S2 = 0.

S1 − S2 = 0

2x(g − g1) + 2y(f − f1) + (c− c1) = 0

ax+ by + c = 0.

Finally, we have a = 2(g − g1), b = 2(f − f1) and c = c− c1.

2.6 Exercises

1. A circle has centre (1, 2) and radius 5.

(a) Find the perpendicular distance from the centre of the
circle to the line with equation x + 2y − 10 = 0 and
hence show that this line is a tangent to the circle.

(b) Find the perpendicular distance from the centre of the
circle to the line with equation x + 2y − 12 = 0 and
hence show that the line does not meet the circle.

2. For what value of k is the point (k, 2k) on the circle with
equation x2 + y2 = 5?

3. Is the point (3, 5) inside, outside or on the circle with equa-
tion x2 + y2 = 9?

4. For what value of k will the line with equation x = 6 be
tangent to the circle with equation x2 + y2 = k?

5. Find the equation of the circle that passes through the origin
and has intercepts equal to 1 and 2 on the x- and y-axis
respectively.
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6. Find the equation of the tangent at the point (0, 2) to the
circle: x2 + y2 − 4x+ 2y = 0

7. Find the equation of the circle that passes through the point
(0, 6), (0, 0) and (8, 0).

8. Find the point of intersection of the circle with equation
x2 + y2 = 4 and circle (x− 2)2 + (y − 2)2 = 4.

9. Find the equation of the circle that has a diameter with end
points (−6, 1) and (2,−5).

10. Find the centre and radius of the following circles

(a) x2 + y2 + 6x− 10y = 9

(b) x2 + y2 + 4y = 0

(c) −x2 − y2 + 8x = 0

(d) (−4− x)2 + (−y + 11)2 = 9

(e) (5− x)2 + (y − 1)2 = 4
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The LIMIT OF A FUNCTION

The limit describes what happens to the values of f(x) of the
function as x approaches the number a, as opposed to f(a), which
gives the value of the function when x is equal to a.

We say f(x) has the limit L as x approachs the number a
provided that f(x) becomes and remains close to L as x becomes
close,but not equal to a. This is expressed by writing

lim
x→a

f(x) = L. (3.1)

When such a number L exists, we say that L is the limit of f(x)
as x approaches a, or simply that L is the limit of f at a.

3.1 Evaluating Limits

3.1.1 Limits of polynomial functions

If f is a polynomial function and a is a real number, then

lim
x→a

f(x) = f(a). (3.2)

Example 3.1 : Evaluate

lim
x→1

2x2 + 1.

43
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Solution

By using the (3.2), we obtain

lim
x→1

2x2 + 1 = 2(1)2 + 1 = 2 + 1 = 3.

3.1.2 Limits of rational functions

1. If q is a rational function and a is in the domain of q, then

lim
x→a

q(x) = q(a). (3.3)

2. If q is a rational function and a is not in the domain of
q, then simplify the rational function before evaluating the
limit.

Example 3.2 : Evaluate the following limits.

i lim
x→3

x2 − 2x+ 1

3x− 2
.

Solution

Since 3 is not in the domain of the rational function

lim
x→3

x2 − 2x+ 1

3x− 2
=

(3)2 − 2(3) + 1

3(3)− 2
=

4

7
.

ii lim
x→2

x2 − 16

x− 4
.

Solution

Since 4 is not in the domain of the rational function, we will
simplify the rational function

lim
x→4

x2 − 16

x− 4
= lim

x→4

(x− 4)(x+ 4)

x− 4
= lim

x→4
(x+ 4) = 8.
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3.2 Laws of Limits

If f and g are functions such that lim
x→a

f(x) and limx→a g(x) ex-

ists, then

i. The limit of a sum or difference is equal to the sum of the
limits.

lim
x→a

[
f(x)± g(x)

]
=
[

lim
x→a

f(x)
]
±
[

lim
x→a

g(x)
]
.

ii. The limit of a product is equal to the product of the limits.

lim
x→a

[
f(x)g(x)

]
=
[

lim
x→a

f(x)
][

lim
x→a

g(x)
]
.

iii. The limit of a quotient is equal to the quotient of the limits.

lim
x→a

[
f(x)

g(x)

]
=

lim
x→a

f(x)

lim
x→a

g(x)
.

iv. The limit of a constant times a function is equal to the con-
stant times the limit of the function.

lim
x→a

[
cf(x)

]
= c lim

x→a
f(x).

v. The limit of the n-th root of a function is the n−th root of
the limit of a function, where n is a positive integer.

lim
x→a

[
f(x)

]1/n
=

[
lim
x→a

f(x)

]1/n
.

3.3 Limits of trigonometric functions

To use trigonometric functions, we must understand how to
measure angles. Although we can use both radians and de-
grees, radians are a more natural measurement because they
are related directly to the unit circle, i.e. a circle with radius 1.
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Figure 3.1: The radian measure of an angle θ is the arc length s of the
associated arc on the unit circle.

The radian measure of an angle is defined as; Given an angle
θ, let s be the length of the corresponding arc on the unit circle
Figure 3.1. We say the angle corresponding to the arc of length
1 has radian measure 1.

The basic trigonometric limit is given by the following theo-
rem

Theorem 3.1 Let x be an angle measured in radians. Then:

lim
x→0

sinx

x
= 1.

Example 3.3 Evaluate

lim
x→0

tanx

x
= 1.

Solution

Using trigonometric identities, we have

lim
x→0

sinx

x cosx
= lim

x→0

[
sinx

x

] [
1

cosx

]
=

[
lim
x→0

sinx

x

] [
lim
x→0

1

cosx

]
= [1]

[
1

cos 0

]
= 1.

Example 3.4 Evaluate lim
x→0

sin 4x

x
.
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Solution

Using Theorem 3.1, we obtain

lim
x→0

sin 4x

x
= lim

x→0

4 sin 4x

4x
= 4 lim

x→0

sin 4x

4x
= 4(1) = 4.

Example 3.5 Evaluate

lim
x→0

cos 3x− cosx

x2
.

Solution

We factor the numerator as follows

cos 3x− cosx = −2 sin
3x− x

2
sin

3x+ x

2
= −2 sinx sin 2x.

This yields

lim
x→0

cos 3x− cosx

x2
= lim

x→0

(−2 sinx sin 2x)

x2
= −2 lim

x→0

sinx

x
lim
x→0

sin 2x

x

= −2 · 1 · lim
x→0

2 sin 2x

2x
= −2 · 1 · 2 · lim

x→0

sin 2x

2x
= −4.

3.4 One-Sided Limits

If lim
x→a+

f(x) = L, we say that the limit of f(x) as x approaches a

from the right is L. We also refer to L as the right-hand limit of
f(x) as x approaches a. The symbol x→ a+ is used to indicate
that x is restricted to values greater than a.

Also, if lim
x→a−

f(x) = L, we say that the limit of f(x) as x

approaches a from the left is L, or that L is the left side limit of
f(x) as x approaches a. The symbol x→ a− is used to indicate
that x is restricted to values less than a.

Example 3.6 Let f(x) = |x|. Find

a. lim
x→0+

f(x)

b. lim
x→0−

f(x).
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Solution

First, we rewrite f(x) = |x| as

f(x) =

{
x if x ≥ 0,

−x if x < 0.

Then, we evaluate the limits as follows

a. lim
x→0+

f(x) = lim
x→0+

x = 0.

b. lim
x→0−

f(x) = lim
x→0−

(−x) = 0.

3.5 Relationship between one-sided limits and

two-sided limits.

The limit of a function i.e. lim
x→a

f(x) = L if and only if both

lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

Example 3.7 Evaluate

lim
x→8

|x− 8|
x− 8

.

Solution

We rewrite lim
x→8

|x− 8|
x− 8

as

f(x) =


x− 8

x− 8
if x > 0,

−(x− 8)

x− 8
if x < 0.

f(x) =

{
1 if x > 0,

−1 if x < 0.
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Therefore

lim
x→8+

|x− 8|
x− 8

= lim
x→8+

1 = 1, and lim
x→8−

|x− 8|
x− 8

= lim
x→8−

(−1) = −1.

Since lim
x→8+

|x− 8|
x− 8

6= lim
x→8−

|x− 8|
x− 8

, the lim
x→8

|x− 8|
x− 8

does not exist.

3.6 The Sandwich (Squeeze) Theorem

Suppose that f ,g and h are functions with

f(x) 6 g(x) 6 h(x),

for each x 6= a in an open interval containing a. If

lim
x→a

f(x) = L and lim
x→a

h(x) = L,

then lim
x→a

g(x) = L.

Example 3.8 Use the sandwich (squeeze) theorem to evaluate

lim
x→0

x2 cosx

x2 + 1
.

Solution

Since −1 ≤ cosx ≤ 1 for all x

−x2

x2 + 1
≤ x2 cosx

x2 + 1
≤ x2

x2 + 1
.

However,

lim
x→0

−x2

x2 + 1
= 0 and lim

x→0

x2

x2 + 1
= 0,

so by the sandwich theorem, we obtain

lim
x→0

x2 cosx

x2 + 1
= 0.
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3.7 Continuity

The common usage of continuous signifies behaviour without
break. The term continuous is used in calculus to describe func-
tions whose graphs have this type of behaviour. Consider the
following graphs

Figure 3.2: Examples of not continuous (discontinuous) functions: (a). Holes
(b). Jumps and (c). Vertical asymptotes.

Definition 3.1 A function f is continuous at a if

i. f(a) exists, that is a is in the domain of f ;

ii. limx→a f(x) exists; and

iii. limx→a f(x) = f(a).

If a function is not continuous at a, then f is said to be discon-
tinuous at a.

Example 3.9 Determine whether f(x) =
x2 − 4

x2 − 3x+ 2
is con-

tinuous at a = 2.

Solution

From the first definition of continuity, we have

f(2) =
22 − 4

22 − 6 + 2
=

0

0
.

Thus f(2) is undefined and therefore f(x) is not continuous at
a = 2.
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Example 3.10 Find the constant c that will make

f(x) =


x2 − 1

x− 1
if x 6= 1,

c if x = 1,

continuous at x = 1.

Solution

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x+ 1)(x− 1)

(x− 1)
= lim

x→1
(x+ 1) = 2.

But for f(x) to be continuous, we need lim
x→1

f(x) = f(1) = 2.

Therefore c = 2.

3.8 Exercises

Students must endeavour to solve all exercises.

1. Find the following limits, if they exist.

i. lim
x→1

x4 − 1

x− 1

ii. lim
x→0

2− cos 3x− cos 4x

x

iii. lim
x→8

x− 8
3
√
x− 2

iv. lim
τ→0

τ 2

1− cos2 τ

v. lim
x→1

x|x− 1|
x− 1

vi. lim
x→0

1− cos 4θ

1− cos 6θ

vii. lim
t→0

√
2 + t−

√
2

t

viii. lim
x→0

sin(sinx)

x

ix. lim
x→1.5

2x2 − 3x

|2x− 3|

x. lim
θ→0

sin θ

θ − tan θ

xi. lim
x→2

|x− 2|
x3 − 8

xii. lim
x→1

cos

(
x2 − 1

x− 1

)
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xiii. lim
x→0

1− cosx

x

xiv. lim
x→0

x2 − 3 sinx

x

xv. lim
x→4
|10− 3x2|

xvi. lim
x→0

x

cos

(
1
2
π − x

)

2. Given

f(x) =


1

x+ 2
, x < −2,

x2 − 5, −2 ≤ x ≤ 3,√
x+ 13, x > 3.

Find

i lim
x→−2+

f(x)

ii lim
x→−2−

f(x)

iii lim
x→−2

f(x)

iv lim
x→3

f(x)

3. If

f(x) =


−x− 2 if x ≤ −1

x if − 1 < x < 1

x2 − 2x if x ≥ 1

determine whether or not limx→−1 f(x) and limx→1 f(x) ex-
ist.

4. Find the derivative of f(x) = ax2 + bx + c, where a, b and
c are none-zero constant, by limit definition.

5. Find the derivative of the following functions by first prin-
ciple.

(a) f(x) = (x− 1)(x− 2)

(b) f(t) =
4t

t+ 1
(c) f(x) = sin x

Hint: sin(x+h)−sinx = 2 cos

(
(x+ h) + x

2

)
sin

(
(x+ h)− x

2

)
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(d) f(x) = tan(ax+ b)

6. For what value of the constant c is the function

f(x) =

{
x+ c if x 6= 2

cx2 + 1 if x = 2

continuous at every number.

7. Find the lim
x→−1

if:
1

2
≤ f(x)

2
≤ x2 + 2x+ 2

2
.

8. If lim
x→4

f(x) = 4, evaluate lim
x→4

√
f(x) + 3x.

9. Find the value of a so that limx→1 f(x) exist when

f(x) =

{
3x+ 5, x ≤ 1

2x+ a, x > 1

10. Evaluate limx→3

√
12− x− x√
6 + 3− 3

.

11. Evaluate the following limits.

(a) lim

x→
π

2

1 + cos 2x
π

2
(π − 2x)2

(b) lim
x→0

x+ 2 sinx
√
x2 + 2 sinx+ 1−

√
sin2 x− x+ 1

12. For what value of a and b will

f(x) =


x2 − 4

x− 2
; x ≤ 2,

ax2 − bx+ 3; 2 ≤ x ≤ 3,

2x− a+ b; x ≥ 3,

be continuous at R.
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Chapter 4

THE DERIVATIVE OF A
FUNCTION

We all know how to find the slope of a straight line. You simply
divide the change in y by the change in x. This is commonly
known as the rate of change. Slopes of linear equations are
constant across the entire line. However, if we consider a curve,
there won’t be a constant slope for the entire function. In such
instances, we seek to find an equation that we can use to give us
the slope of a line tangent to the curve at any given value of x.
Using this equation gives us the instantaneous rate of change or
the slope at a specific point on the curve.

Definition 4.1 The derivative of a function is a function f ′

defined by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
. (4.1)

Example 4.1 Use the definition of the derivative to find f ′(x)
if f(x) = 4x− 2.

Solution

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

4(x+ h)− 2− (4x− 2)

h

= lim
h→0

4x+ 4h− 2− 4x+ 2

h
= lim

h→0

4h

h
= lim

h→0
4 = 4.

55
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Example 4.2 Using the first principle, find f ′(x) if f(x) =
1

x2
.

Solution

f ′(x) = lim
h→0

1

(x+ h)2
− 1

x2

h
= lim

h→0

x2 − x2 − 2xh− h2

x2(x+ h)2h

= lim
h→0

x2 − (x+ h)2

x2(x+ h)2h
= lim

h→0

−h(2x+ h)

x2(x+ h)2h
= lim

h→0

−2x− h
x2(x+ h)2

=
−2x

x4
=
−2

x3
.

The notation for the derivative can also assume different forms.
Common alternative notations for f ′(x) are

d

dx
f(x), Dxf(x).

Also, when f is defined by y = f(x), it is also common to use
dy

dx
and y′ to denote the derivative.

4.1 Rules for differentiation

4.1.1 The derivative of a constant function

If f(x) = c, where c is a constant, then f ′(x) = 0.

Example 4.3 Find f ′(x) if f(x) = 200π.

4.1.2 The Power Rule

If f(x) = xn, where n is any real number, then

f ′(x) = nxn−1. (4.2)

Example 4.4 If f(x) = x5, find f ′(x).
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Solution

By the power rule f ′(x) = 5x4.

Example 4.5 If f(x) =
√
x, find f ′(x).

Solution

First, we rewrite the function f(x) =
√
x = x1/2. Then, we have

f ′(x) =
1

2
x1/2−1 =

1

2
x−1/2.

Example 4.6 If f(x) =
1
3
√
x

, find f ′(x).

Solution

We rewrite the function as follows f(x) =
1
3
√
x

= x−1/3. Then,

we have

f ′(x) = −1

3
x−1/3−1 = −1

3
x−4/3.

4.1.3 The Sum Rule

If f and g are differentiable at x, then

d

dx
[f(x)± g(x)] =

d

dx
f(x)± d

dx
g(x). (4.3)

Example 4.7 Find f ′(x) if f(x) = x7 +
√
x.

Solution

Firstly, we apply the sum rule (4.3) then followed by the power
rule (4.2) as follows

d

dx
f(x) =

d

dx
[x7 +

√
x] =

d

dx
[x7] +

d

dx
[x1/2] = 7x6 +

1

2
x−1/2.
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Remark 4.1 If f is differentiable at x, then for any constant
c,

d

dx
[cf(x)] = c

d

dx
[f(x)].

Example 4.8 Find f ′(x) for the following functions.

1. f(x) = 4x5

Solution

Using Remark 4.1, we obtain

d

dx
[4x5] = 4

d

dx
[x5] = 4[5x4] = 20x4.

2. f(x) = 3
√
x+ 5x2

Solution

We proceed as follows

d

dx
[3
√
x+ 5x2] =

d

dx
(3(x1/2)) +

d

dx
(5(x2))

= 3

[
1

2
x−1/2

]
+ 5(2)x =

3

2
x−1/2 + 10x.

4.1.4 The Product Rule

If f is differentiable at x, then

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)]. (4.4)

Example 4.9 Calculate
dy

dx
if y = (x2 + x− 1)(2x+ 4).
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Solution

dy

dx
= (x2 + x− 1)(2) + (2x+ 4)(2x+ 1) = 6x2 + 12x+ 2.

The Quotient Rule

If f and g is differentiable at x and g(x) 6= 0, then

d

dx

[
f(x)

g(x)

]
=
g(x)

d

dx
f(x)− f(x)

d

dx
g(x)

[g(x)]2
. (4.5)

Example 4.10 Find f ′(x), if f(x) =
x4 + 2x− 1

3x2 + 5
.

Solution

f ′(x) =
d

dx

[
x4 + 2x− 1

3x2 + 5

]

=
(3x2 + 5)

d

dx
(x4 + 2x− 1)− (x4 + 2x− 1)

d

dx
(3x2 + 5)

[3x2 + 5]2

=
(3x2 + 5)(4x3 + 2)− (x4 + 2x− 1)(6x)

[3x2 + 5]2
.

4.1.5 Differentiation of trigonometric functions

Theorem 4.2 For any real number x,

d

dx
[sinx] = cos x and

d

dx
[cosx] = − sinx. (4.6)

Example 4.11 Let f(x) = x sinx− cosx. Find f ′(x).
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Solution

Using the sum rule (4.3), product rule (4.4) and the trigonomet-
ric differentiation rule (4.6), we have

d

dx
[x sinx− cosx] =

d

dx
[x sinx]− d

dx
[cosx]

= x
d

dx
[sinx] + sin x

d

dx
[x]− d

dx
[cosx]

= x cosx+ sinx+ sinx = x cosx+ 2 sinx.

Example 4.12 Find
dy

dx
if y =

x2 + 2

1 + sin x
.

Solution

dy

dx
=

(1 + sin x)
d

dx
(x2 + 2)− (x2 + 2)

d

dx
(1 + sin x)

[1 + sin x]2

=
(1 + sin x)(2x)− (x2 + 2)(cosx)

[1 + sin x]2

=
2x+ 2x sinx− x2 cosx− 2 cosx

[1 + sin x]2

Theorem 4.3 For each real number x, for which the functions
are defined:

1.
d

dx
tanx = sec2 x

2.
d

dx
secx = secx tanx

3.
d

dx
cotx = − csc2 x

4.
d

dx
cscx = − cscx cotx.

Example 4.13 Find f ′(x) if f(x) =
tanx

1 + 2 secx
.
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Solution

f ′(x) =
d

dx

[
tanx

1 + 2 secx

]

=
(1 + 2 secx)

d

dx
(tanx)− tanx

d

dx
(1 + 2 secx)

(1 + 2 secx)2

=
(1 + 2 secx)(sec2 x)− tanx(2 secx tanx)

(1 + 2 secx)2
.

Example 4.14 Find the derivative of f(x) = cot x.

Solution

f ′(x) =
d

dx

(
1

tanx

)
=

(
cosx

sinx

)

=
sinx

d

dx
(cosx)− cosx

d

dx
(sinx)

sin2 x

=
− sin2 x− cos2 x

sin2 x
= − 1

sin2x
= − csc2 x.

4.1.6 The Chain Rule (Composite functions)

If f is differentiable at x and f is differentiable at g(x), then
f(g(x)) is differentiable at x and

d

dx
[f(g(x))] = f ′(g(x))g′(x) =

d

dx
[(f ◦ g)(x)]

An easy way to remember the chain rule is to suppose that u =
g(x) and y = f(u) then

dy

dx
=
dy

du
× du

dx
.

Example 4.15 Differentiate y = (x2 + x)−5.
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Solution

Let u = x2 + x, then
du

dx
= 2x + 1. Thus y = u−5 yields

dy

du
=

−5u−6. Therefore,

dy

dx
=
dy

du
× du

dx
= −5u−6(2x+ 1) = −5(x2 + x)−6(2x+ 1).

Example 4.16 Find
dy

dx
if y = sin5 x.

Solution

Let u = sinx then y = u5. This yields
du

dx
= cosx and

dy

du
=

5u4 = 5 sin4 x. Thus

dy

dx
=
dy

du
× du

dx
= 5sin4x cosx.

Example 4.17 Find
dy

dx
if y = tan(3x2 + 1).

Solution

Let u = 3x2 + 1 then y = tanu. Therefore,

du

dx
= 6x, and

dy

du
= sec2 u = sec2(3x2 + 1).

Thus

dy

dx
=
dy

du
× du

dx
= sec2(3x2 + 1)(6x).

Alternatively,

dy

dx
= sec2(3x2 + 1)

d

dx

(
3x2 + 1

)
= 6x sec2(3x2 + 1).
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4.1.7 The General Power Rule

The general power rule is a special case of the chain rule. It is
useful when finding the derivative of a function that is raised to
the n-th power. The general power rule states that this derivative
is n times the function raised to the (n− 1)-th power times the
derivative of the function.

d

dx
[f(x)]n = n[f(x)]n−1f ′(x). (4.7)

Example 4.18 Find y′ if y = cos3(x2 + 1).

Solution

Using the general power rule (4.7), we have

y′ = 3 cos2(x2 + 1)
d

dx
[cos(x2 + 1)]

= 3 cos2(x2 + 1)[− sin(x2 + 1)(2x)]

= −6cos2(x2 + 1) sin(x2 + 1).

4.2 Implicit Differentiation

The functions that we have met so far can be described by ex-
pressing one variable explicitly be described in terms of another
variable- for example, y =

√
x3 + 1 or y = x sinx, or in gen-

eral y = f(x). Some functions, however, are defined implicitly
by a relation between x and y such as x2+y2 = 25 or sin(xy) = 4.

Fortunately, we don’t need to solve an equation for y in terms
of x in order to find the derivative of y. Instead, we can use the
method of implicit differentiation. This consists of differentiat-
ing both sides of the equation with respect to x and then solving
the resulting equation for y′.

Example 4.19 Use implicit differentiation to find
dy

dx
if xy2 +

6y + x = 0.
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Solution

d

dx
[xy2 + 6y + x] =

d

dx
[0]

y22xyy′ + 6y′ + 1 = 0

y′[2xy + 6] = −1− y2

y′ =
−1− y2

2xy + 6
.

Example 4.20 Find y′ if cos(xy) + sin x = 1.

Solution

d

dx

[
cos(xy) + sin x

]
=

d

dx
[1]

− sin(xy)[y + xy′] + cos x = 0

y′ =
y sin(xy)− cosx

−x sin(xy)
=

cosx− y sin(xy)

x sin(xy)
.

4.3 Differentiation of the Natural Exponen-

tial Function

Rule 1

d

dx

[
ex
]

= ex.

Rule 2

If g(x) is differentiable, then

d

dx

[
eg(x)

]
= g′(x)eg(x)

Example 4.21 Find
dy

dx
if y = ex

2

.
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Solution

dy

dx
=

d

dx
[x2]ex

2

= 2xex
2

.

Example 4.22 If y = expx sin(2x) + ecosx, find y′.

Solution

y′ = ex sin(2x) + ex cos(2x)(2)− sinxecosx.

4.4 Differentiation of the Natural Logarith-

mic Function

Rule 1

d

dx
[lnx] =

1

x

Rule 2

If g(x) is differentiable at x, then

d

dx
[ln g(x)] =

g′(x)

g(x)

Example 4.23 1. Find y′ if y = ln(sinx).

Solution

y′ =

d

dx
[sinx]

sinx
=

cosx

sinx
= cotx.

2. Find y′ if y = sin(x2 + 1) lnx+ ln(4x3 + 3).
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Solution

y′ =
1

x
sin(x2 + 1) + lnx cos(x2 + 1)(2x) +

12x2

4x3 + 3
.

4.5 Differentiation of General Exponential and

Logarithmic Functions

Rule 1

Let y = ax, then
y = eln a

x

= ex ln a.

This implies
y = ln aex ln a,

and finally,
y′ = (ln a)ax.

Example 4.24 Find
dy

dx
if y = 4x.

Solution

y′ = ln 4(4x).

Rule 2

d

dx
[ag(x)] = [ln a][ag(x)]g′(x) i.e. eln a

g(x)

= eg(x) ln a implies

g′(x) ln aeg(x) ln a = [ln a][ag(x)]g′(x).

Example 4.25 Find y′ if y = 6sinx.

Solution

y′ = (ln 6)6sinx cosx.

Example 4.26 Find y′ if y = (x2 + 1)10 + 10x
2+1.



4.5. DIFFERENTIATIONOF GENERAL EXPONENTIAL AND LOGARITHMIC FUNCTIONS67

Solution

y′ = 10(x2 + 1)9(2x) + (ln 10)10x
2+1(2x)

= 20x(x2 + 1)9 + (ln 10)10x
2+1(2x)

Rule 3

Let
y = loga x then ay = x.

Therefore,

ln ay = lnx then y =
lnx

ln a
.

This implies
dy

dx
=

1

x ln a
.

Example 4.27 Find y′ if y = log4 x.

Solution

y′ =
1

x ln 4

Rule 4

Let

y = loga |g(x)| then
dy

dx
=

1

g(x) ln a

d

dx
[g(x)].

Example 4.28 Find f ′(x) if f(x) = log 3
√

(2x+ 5)2.

Solution

f(x) = log(2x+ 5)2/3 =
2

3
log |2x+ 5|.

Thus,

f ′(x) =
2

3

1

(2x+ 5) ln 1
(2x) =

4

(6x+ 15) ln 10
.
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4.6 Logarithmic Differentiation

This method is used to differentiate functions of the form f(x)g(x).

Example 4.29 Find y′ if y = 3x.

Solution

If y = 3x, then ln y = ln 3x.

ln y = x ln 3

1

y
y′ = ln 3

y′ = ln 3y = ln 3(3x).

Example 4.30 Find y′ if y = xsinx.

Solution

If ln y = lnxsinx

1

y
y′ = cosx lnx+ sinx(

1

x
)

y′ =

[
cosx lnx+

(
1

x

)
sinx

]
xsinx.

4.7 Higher Order Derivatives

The derivative of a function f leads to another function f ′ if f ′

has a derivative, it is denoted by f ′′ and is called the second
derivative of f . Also, the third derivative f ′′′ of f is the
derivative of the second derivative.

If y = f(x), then the first n derivatives are denoted by

y′, y′′, y′′′, . . . , y(n).
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If the differential notation is used, we write

dy

dx
,
d2y

dx2
,
d3y

dx3
, . . . ,

dny

dxn
.

Example 4.31 Given 2x+ 2yy′ = 0, show that y′′y3 + 1 = 0.

Solution

The first derivative is y′ = −x
y
. Then,

y
′′

=
−[y − xy′]

y2
=

−[y − x
(
− x

y

)
]

y2

= −y + x2/y

y2

= −y
2 + x2

y.y2
= − 1

y3
.

4.8 Tangents and Normal

Tangent

A tangent to a curve is a line that touches the curve at one
point and has the same slope as the curve at that point, see, e.g.
Figure 4.1.

Consider the tangent to the curve y = f(x) at A(x1, y1). Then
gradient of tangent= f ′(x1). The equation of tangent is given by

y − y1 = f ′(x1)(x− x1). (4.8)

Example 4.32 Find the equation of the tangent at (1, 2) on the
curve y = x2 + 4x− 3.
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Figure 4.1: Illustation of tangent line.

Solution

Let y′ = 2x+4, then the gradient of the tangent at (1, 2) is given
by

f ′(1) = 2(1) + 4 = 6.

The equation of the tangent is

y − 2 = 6(x− 1) hence y = 6x− 4.

Normal

A normal to a curve is a line perpendicular to a tangent to the
curve, see e.g. Figure 4.2.

Figure 4.2: Illustration of normal line.

Consider the normal to the curve y = f(x) at point A(x1, y1).
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The gradient of normal = − 1

f ′(x)
. Thus, the equation of the

normal is

y − y1 = − 1

f ′(x)
(x− x1).

Example 4.33 Find the equation of the normal at A(1, 2) on
the curve f(x) = x2 + 4x− 3.

Solution

Let f ′(x) = 2x+ 4, then the gradient of the normal at A(1, 2) is

given by − 1

2(1) + 4
= −1

6
. Thus, the equation of the normal is

y − 2 = −1

6
(x− 1), therefore x+ 6y = 13.

4.9 Local extrema of functions

Figure 4.3: Illustration of local extrema of a function.

Consider Figure 4.3. For the function whose graph is shown
in Figure 4.3, the local maxima occurs at l1 and l3, whereas the
local minima occurs at l2 and l4.
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Definition 4.2 (local extrema) Let c ∈ (a, b), then the funtion
f at the c has the following extrema;

1. f(c) is a local maximum of f if f(x) ≤ f(c), ∀x ∈ (a, b).

2. f(c) is a local manimum of f if f(x) ≥ f(c), ∀x ∈ (a, b).

Definition 4.3 (Critical number) A number c in the domain
of a function f is a critical number of f if either f ′(c) = 0 or
f ′(c) does not exist.

Example 4.34 Find the critical numbers of f(x) = x1/3(8−x).

Solution

First, we determine the derivative of f,

f ′(x) =
1

3
x−2/3(8− x)− x1/3

=
8− x
3x2/3

− x1/3

=
8− x− 3x

3x2/3
=

8− 4x

3x2/3
.

For the critical number, we set f ′(x) = 0. This yields

8− 4x = 0 and x = 2.

Also f ′(x) is undefined at x = 0. Hence the critical numbers are
0 and 2.

4.9.1 Increasing and Decreasing functions

Let f be a function that is continuous on a closed interval [a, b]
and differentiable on the open interval (a, b).

1. if f ′(x) > 0 on (a, b), then f is increasing on [a, b].

2. if f ′(x) < 0 on (a, b), then f is decreasing on [a, b].
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4.9.2 The First Derivative test

Suppose c is a critical number of a function f and (a, b) is an
open interval containing c. Suppose further that f is differen-
tiable on (a, b), except possibly at c.

1. if f ′(x) > 0 for a < x < c and f ′(x) < 0 for c < x < b,
then f(c) is a local maximum of f .

2. if f ′(x) < 0 for a < x < c and f ′(x) > 0 for c < x < b,
then f(c) is a local minimum of f .

3. if f ′(x) > 0 or f ′(x) < 0 for al x ∈ (a, b) except x = c, then
f(c) is not a local extremum of f .

Example 4.35 Find the local maxima and minima of f if f(x) =
x1/3(8 − x). State the intervals over which f is increasing and
decreasing.

Solution

For critical values, f ′(x) = 0.

f ′(x) =
1

3
x−2/3(8− x) + x1/3(−1)

=
8− x
3x2/3

− 1

3

=
8− x− 3x

3x2/3
=

8− 4x

3x2/3
.

For the critical number, we set f ′(x) = 0. This yields

8− 4x = 0 and x = 2.

Also f ′(x) is undefined at x = 0. Hence the critical numbers are
0 and 2.

Interval (-∞,0) (0,2) (2,∞)
Sign of (8-4x) + + -

Sign of 3x
2
3 + + +

Sign of f ′(x) + + -
Direction ↗ ↗ ↘
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Thus f(x) has a local maximum at x = 0 and its value is

f(2) = 21/3(8− 2) = 21/36 = 7.6,

f(x) is increasing on (−∞, 0)
⋃

(0, 2) and decreasing on (2,∞).

4.9.3 Absolute minima and maxima(Extrema on a closed
interval)

Definition 4.4 Let a function f be defined on an interval I
and let c be a number in I.

1. f(c) is the maximum value of f on I if f(x) 6 f(c) for
every x in I.

2. f(c) is the minimum value of f on I if f(x) ≥ f(c) for
every x in I.

Steps for finding absolute extrema

(1). Find all the critical numbers of f.

(2). Calculate f(c) for each critical number c.

(3). Calculate f(a) and f(b).

(4). The absolute maximum and minimum of f on [a, b] are the
largest and smallest of the functional values calculated in
(2) and (3).

Example 4.36 If f(x) = x3− 12x, find the absolute maximum
and minimum values of f on the closed interval [−3, 5].

Solution

For critical values, f ′(x) = 0.

3x2 − 12 = 0 thus x2 = 4. Hence x = ±2.
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Thus, we solve for the functional values at the critical points and
the end points of the interval.

f(−2) = (−2)3 − 12(−2) = −8 + 24 = 16,

f(2) = (2)3 − 12(2) = 8− 24 = −16,

f(−3) = (−3)3 − 12(−3) = 9,

f(5) = 53 − 12(5) = 65.

Thus the absolute maximum is f(5) = 65 and the absolute min-
imum is f(2) = −16.

4.10 Concavity and the Second Derivative test

Figure 4.4: Illustration for Upward (left) and Downward (right) concavity.

4.10.1 Test for Concavity

Suppose a function f is differentiable on an open interval con-
taining c, and f ′′(c) exists.

1. if f ′′(c) > 0 on (a, b), the graph is concave upward on (a, b).
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2. if f ′′(c) < 0 on (a, b), the graph is concave downward on
(a, b).

Definition 4.5 (Point of Inflection) A point P (k, f(k)) on the
graph of a function f is a point of inflection if there exists an
open interval (a, b) containing k such that one of the following
statements holds.

1. f ′′(x) > 0 if a < x < k and f ′′(x) < 0 if k < x < b; or

2. f ′′(x) < 0 if a < x < k and f ′′(x) > 0 if k < x < b

Then the point P (k, f(k)) is an inflection point.

Figure 4.5: Illustration for Point of Inflection (POI).

4.10.2 The Second Derivative Test

Suppose a function f is differentiable on an open interval con-
taining c and f ′(c) = 0

1. if f ′′(c) < 0, then f has a local maximum at c.

2. if f ′′(c) > 0, then f has a local minimum at c.
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Example 4.37 If f(x) = 12 + 2x2− x4, use the second deriva-
tive test to find the local maxima and minima of f . Discuss
concavity, find the points of inflection.

Solution

For the crtical values f ′(x) = 0. The first derivative is given by

f ′(x) = 4x− 4x3

4x− 4x3 = 0 therefore 4x(1− x2) = 0,

x = 0, 1 and − 1.

Next, we determine the second derivative, i.e. f ′′(x) = 4−12x2.
Thus,

f ′′(0) = 4 > 0 and f ′′(1) = −8 < 0.

Thus

• f has a local maximum at x = 1 and also, f ′′(−1) = −8 < 0
=⇒ f has a local minimum at x = 0.

To locate the possible points of inflection, we solve the equa-
tion f ′′(x) = 0.

4− 12x2 = 0.

Therefore x2 =
1

3
. Hence x = ±

√
1

3
.

We have the following results.

i. Let −1 ∈
(
−∞,−

√
1
3

)
, f ′′(−1) = −8 < 0 concave down-

ward.

ii. Let 0 ∈
(
−
√

1
3
,
√

1
3

)
, f ′′(0) = 4 > 0, concave upward.

iii. Let 1 ∈
(√

1
3
,∞
)

,f ′′(1) = −8 < 0 concave downward.
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Finally, we determine the regions of concavity as follows.

• f is concave downward on the interval

(
−∞,−

√
1
3

)⋃(√
1
3
,∞
)

and

• f is concave upward on the interval

(
−
√

1
3
,
√

1
3

)
.

Hence f has inflection points occurring at x = −
√

1
3

and x =√
1
3
. Thus, we have f

(
−
√

1
3

)
= 113

9
and f

(√
1
3

)
=

113

9
. This

means the inflection points are

(
−
√

1

3
,
113

9

)
and

(√
1

3
,
113

9

)
.

4.11 Optimization Problems

4.11.1 Steps In Solving Optimization Problems

i. Understand the problem.

ii. Draw a diagram.

iii. Introduce notation. e.g. A = xy.

iv. Change the function to be optimized (minimized or maxi-
mized) to a function of one variable.

v. Find the appropriate extrema.

Example 4.38 A farmer has 2400ft of fencing and want to
fence off a rectangular field that borders a straight river. What
are the dimensions of the field that has the largest area?
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Figure 4.6: Illustration of the Example 4.38

Solution

Let x and y denote the sides of the rectangle as shown above.
Thus, Area of rectangular field (A) = xy. But

2x+ y = 2400 thus y = 2400− 2x.

A = x(2400− 2x) = 2400x− 2x2.

Note that x ≥ 0 and x ≤ 1200, otherwise A < 0. So the function
that we wish to maximize is

A = 2400x− 2x2, 0 ≤ x ≤ 1200,

A′ = 2400− 4x.

For critical numbers, A′ = 0

2400− 4x = 0

4x = 2400 and x =
2400

4
= 600.

The maximum value of A must occur either at this critical num-
ber or at an endpoint of the interval. Since,

A(600) = 720, 000ft2 A(0) = 0 and A(1, 200) = 0.

Thus, the maximum occurs at x = 600ft. This yields

y = 2400− 2(600) = 1200ft.

Therefore, the dimension are x = 600ft and x = 1, 200ft.
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Example 4.39 A right circular cylinder is inscribed in a sphere
of radius R. If the height of the circular cylinder is 2x, express
its volume in terms of x and R. Find the maximum value of this
volume as x varies.

Solution

Let O denote the centre of the sphere and let r denote the base
radius of the cylinder, see Figure 4.7.

Figure 4.7: Illustration of the Example 4.39.

The volume of the cylinder is given by

V = πr2(2x),

but r2 = R2 − x2.

V = π(R2 − x2)(2x) = 2π(R2x− x3).

For critical numbers,
dV

dx
= 0. Therefore,

dV

dx
= 2π(R2 − 3x2)
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2π(R2 − 3x2) = 0 and x =
R√

3
.

Next, the second derivative is given by

d2V

dx2
= 2π(−6x).

Thus, if x =
R√

3
. Then,

d2V

dx2
= −12π

R√
3
< 0.

Therefore, V attains maximum at x =
R√

3
. The maximum is

V = 2π

[
R2

(
R√

3

)
−
(
R√

3

)3]

= 2π

[
3R3 −R3

3
√

3

]

= 2π

[
2R3

3
√

3

]
=

4πR3

3
√

3
=

4
√

3πR3

9
.

4.11.2 Related Rates

The feature common to these applications is that the derivative
dives the instantaneous rate of change of one quantity with re-
spect to another. Suppose y is described by a function of x and
t is a time variable on which both x and y depend. Problems of

related rates involve the relationship between
dx

dt
and

dy

dt
.

Example 4.40 Air is being bumped into a spherical balloon so
that its volume increases at a rate of 100cm3/s. How fasts is the
radius of the balloon increasing when the diameter is 50cm?
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Solution

Let V denote the volume of the balloon and r its radius. Then
dV

dt
= 100cm3/s and r = 25cm. But the volume is given by

V =
4

3
πr3.

dV

dt
=
dV

dr
· dr
dt

= 4πr2 · dr
dt
.

dr

dt
=

1

4πr2
· dV
dt

=
1

4π(25)2
· 100 =

1

251
.

4.12 Exercises

1. Find the derivative of the following functions;

i. y = 10( 1−x1+x )

ii. y = eax csc(bx+ c)

iii. y =
e2x cosx

x sinx
iv. y = log(3x2 + 2)5

v. y = ln(secx+ tanx)

vi. y = exp(
√

cotx)

vii. y = ln[cos(lnx)x]

viii. y = cosx[lnx]ex
2

xx

ix. y = ln

(
a+ b tanx

a− b tanx

)
x. y = (tanx)cotx + (secx)x

xi. y = ln(xlnx + sinlnx x)

xii. y =
(4x2 − 1)(1 + x2)

1
2

x3(x− 7)
3
4

.

2. If y = xx
x...

, prove that x
dy

dx
=

y2

1− y lnx
.

3. Show that
dy

dx
=

y2 cotx

1− y ln(sinx)
,

if y = (sinx)(sinx)
(sinx)···

.

4. If y =

√
lnx+

√
lnx+

√
lnx+ · · ·,

show that
dy

dx
=

1

x(2y − 1)
.
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5. If xy = exp(x− y), prove that
dy

dx
=

lnx

(1 + ln x)2
.

6. Find
dy

dx
at (0, 1)

if
(lnx)2

ey
− lnx+ y = esin(2x−2) cos

2 y − 1

7. Find the second derivative of the following functions;

(a) y = cos(lnx)

(b) y = xx

(c) y = axxa

8. If x3 − y3 = 1, show that y5y′′ + 2x = 0

9. Find the equation of the tangent and normal line to the
graph of x3− x ln y+ y3 = 2x+ 5 at the point where x = 2.

10. Find the equation of tangent and normal to f(x) = x
e

ln( e
x
)

when x = e.

11. Find the smallest possible value of the consatnt k such that
the graphs of y = ex and y = ksinx are tangent to one
another. Find also the point of tangency.

12. For what nonnegative value(s) of b is the line
y = −1

12
x+ b normal to y = x3 + 1

3
?

13. Find the value of k, where k is a constant, such that the
graph of y = kx and y = log kx will be tangent to one
another. Find the point of tangency.

14. A certain point(s) (a, b) is on the graph of
y = x3 + x2 − 9x − 9, and the tangent line to the graph at
(a, b) passes through the point (4,−1). Find (a, b).

15. At what point(s) of the graph of y = x5+4x−3 does the tan-
gent line to the graph also pass through the point B(0, 1)?

16. If the line 4x − 9y = 0 is tangent in the first quadrant to
the graph of y = 1

3
x+ c, what is the value of c?
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17. If y = xex − ex − 2x2, determine any relative maximum or
minimum values. Is there an absolute minimum or maxi-
mum value?

18. Suppose h = eln t−ln(t2−1). ( t in seconds and h in metres)

i. When is the velocity equal to zero?

ii. Is this a maximum or minimum height?

iii. Find the acceleration.

iv. Is there a minimum velocity?

19. Given a function f(x) = x
3
5 (4− x)

(a) Find the critical numbers.

(b) Find interval of decrease and/or increase of f

(c) Find the local extrema if there are.

20. find the critical numbers of f(x) = (x− 1)
2
3 and determine

whether they yield relative extrema or inflection points.

21. Find the absolute extrema of the following functions on
their respective interval.

(a) f(x) = sin x+ x on[0, 2π].

(b) f(x) =
2x+ 5

(x2 − 4)2
on [−5,−3].

(c) f(x) = cos2 x+ sinx on [0, π]

(d)

f(x) =

{
x3 − x

3
for 0 ≤ x ≤ 1

x2 + x− 4
3

for 1 < x ≤ 2

22. A rectangular box with an open top is to be constructed from
a rectangular sheet of cardboard measuring 20cm by 12cm
by cutting equal squares of side length x cm out of the four
corners and folding the flaps up.

(a) Express the volume as a function of x.
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(b) Determine the dimensions of the box with greatest vol-
ume and give this maximum volume to the nearest whole
number.

23. On a warm day in a garden, water in a bird bath evaporates
in such a way that the volume, V mL, at time t hours is

given by V =
60t+ 2

3t
, t > 0.

(a) Show that
dV

dt
< 0

(b) At what rate is the water evaporating after 2 hours?

24. The new owner of an apartment want to install a window in
the shape of a rectangle surmounted by a semicircle in or-
der to allow more light into the apartment. The owner has
336cm of wood for a surround to the window and wants to
determine the dimensions that will allow as much light into
the apartment as possible. Given the radius of the semicir-
cle to be x cm and height to be h cm;

(a) Show that the area A, in cm2, of the window is A =
336x− 1

2
(4 + π)x2.

(b) Hence determine, to the nearest cm, the width and the
height of the window for which the area is greatest.

(c) Structural problems require that the width of the window
should not exceed 84cm. What should the new dimen-
sions of the window be for maximum area?

25. The total surface area of a closed cylinder is 200cm2. If the
base radius is r cm and the height is h cm:

(a) Express h in terms of r.

(b) Show that the volume, V cm3, is V = 100r − πr3

(c) Hence show that for a minimum volume, the height
must equal the diameter of the base.

(d) Calculate, correct to the nearest integer, the minimum
volume if 2 ≤ r ≤ 4.
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26. A right circular cone is inscribed in a sphere of radius 7cm.
If r and h are the radius and height respectively,

(a) Show that the volume V cm3 of the cone satisfies the
relationship V = 1

3
(14h2 − h3)π.

(b) Hence, obtain the exact values of r and h for which the
volume is greatest, justifying your answer.

27. A container in the shape of an inverted right cone of radius
2cm and depth 5cm is being filled with water. When the
depth of water is hcm, the radius of the water level is rcm.

(a) Express the volume of the water as a function of h

(b) At what rate, with respect to the depth of water, is the
volume of water changing, when its depth is 1cm?

28. A cylinderical tank of radius 10feet is being filled with
wheat at the rate of 314 cubic feet perminute. How fast
is the depth of the wheat increasing?

29. A 5 − foot girl is walking toward a 20 − foot lamppost t
the rate of 6 feet per second. How fast is the tip of her
shadow(cast by the lamp) moving?

30. A rocket is shot vertically upward with an initial velocity
of 400cmper second. Its height s after t seconds is s =
400t − 16t2. How fast is the distance changing from the
rocket to an observer on the ground 1800cm away from the
laundering site, when the rocket is still rising and is 2400cm
above the ground?



Chapter 5

ANTIDERIVATIVES

Definition 5.1 A function F is an antiderivative of the func-
tion f if F ′(x) = f(x). For example, the function F (x) = x2 is
an antiderivative of f(x) = 2x, because

F ′(x) = 2x = f(x).

There are many other antiderivatives of 2x, such as x2+2, x2− 5
3

and x2 +
√

3. In general, if c is any constant, then x2 + c is an
antiderivative of 2x because

d

dx
(x2 + c) = 2x+ 0 = 2x.

Thus there is a family of antiderivatives of 2x of the form F (x) =
x2+c, where c is any constant. The process of finding antideriva-
tives is called antidifferentiation.

5.1 Indefinite Integrals

The notation ∫
f(x)dx = F (x) + c,

where F ′(x) = f(x) and c is an arbitrary constant, denotes the
family of all antiderivatives of f(x). The symbol “

∫ ′′
is an in-

tegral sign. We call
∫
f(x)dx the indeifinite integral of f(x).

87
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The expression f(x) is called the integrand, and c is the con-
stant of integration. The process of finding F (x)+c, when given∫
f(x)dx is referred to as indefinite integration.

Example 5.1 Evaluate (i)
∫

3x2dx and (ii).
∫

cosxdx.

Solution

(i).
∫

3x2dx = x3 + c.

(ii).
∫

cosxdx = sinx+ c.

5.1.1 Some Basic Integration Functions

1.

∫
kdx = kx+ c

2.

∫
xndx =

xn+1

n+ 1
+c, n 6=

−1

3.

∫
cosxdx = sinx+ c

4.

∫
sinxdx = − cosx+ c

5.

∫
sec2 xdx = tanx+ c

6.

∫
csc2 xdx = − cotx+ c

7.

∫
secx tanxdx = secx+c

8.

∫
cscx cotxdx = − cscx+

c

9.

∫
exdx = ex + c

10.

∫
1

x
dx = lnx+ c

Example 5.2 Evaluate

a.

∫
x8dx

b.

∫
1

x3
dx

c.

∫
3
√
x2dx

d.

∫
tanx

secx
dx

Solution

1.

∫
x8dx =

x9

9
+ c
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2.

∫
1

x3
dx =

∫
x−3dx =

x−2

−2
+ c = − 1

2x2
+ c

3.

∫
3
√
x2dx =

∫
x2/3dx =

x
2
3+1

2
3

+ 1
+ c =

3x5/3

5
+ c

4.

∫
tanx

secx
dx =

∫
cosx

(
sinx

cosx

)
dx =

∫
sinxdx = − cosx+ c

Remark 5.1 ∫
d

dx
(f(x))dx = f(x) + c.

Example 5.3 Evaluate ∫
d

dx
(x2)dx

Solution ∫
d

dx
(x2)dx = x2 + c.

5.1.2 Properties of Indefinite Integral

1.

∫
cf(x)dx = c

∫
f(x)dx, for any non-zero constant c.

2.

∫
[f(x)± g(x)]dx =

∫
f(c)dx±

∫
g(x)dx

Example 5.4 Evaluate (a).

∫
(5x3 + 2 cosx)dx (b).

∫
(8x3 − 6

√
x+

1

x3
)dx

Solution

a. ∫
(5x3 + 2 cosx)dx =

∫
5x3dx+

∫
2 cosxdx
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= 5

∫
x3dx+ 2

∫
cosxdx

= 5

(
x4

4

)
+ 2 sinx+ c

=
5x4

4
+ 2 sinx+ c.

b. ∫
(8x3 − 6

√
x+

1

x3
)dx =

∫
8x3dx−

∫
6
√
xdx+

∫
1

x3
dx

=
8x4

4
− 6x3/2

3
2

− 1

2x2
+ c

= 2x4 − 4x3/2 − 1

2x2
+ c.

Example 5.5 Evaluate (a).

∫
(x2 − 1)2

x2
dx (b).

∫
1

cosx cotx
dx

Solution

a. ∫
(x2 − 1)2

x2
dx =

∫
x4 − 2x2 + 1

x2
dx

=

∫
x2 − 2 +

1

x2
dx =

x3

3
− 2x− 1

x
+ c.

b. ∫
1

cosx cotx
dx =

∫
sinx

cos2 x
dx

=

∫
secx tanxdx = secx+ c.

5.2 The Definite Integral

The following is the basic tool for evaluating definite integrals.
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5.2.1 Fundamental Theorem of Calculus

If f is continuous at every point [a, b] and if F is an antideriva-
tive of f on [a, b], then∫ b

a

f(x)dx = F (b)− F (a).

Some other common notations are∫ b

a

f(x)dx = F (x)
∣∣∣b
a

and

∫ b

a

f(x)dx = F (x)
∣∣∣b
x=a
.

′a′ is known as the lower limit of the integral and ′b′ is the upper
limit of integration.

Example 5.6 Evaluate∫ 2

1

x dx =
x2

2

∣∣∣∣∣
2

1

=
(2)2

2
− (1)2

2
= 2− 1

2
=

3

2

5.3 Change of Variables in Indefinite Inte-

grals

The basic integration formulas cannot be used directly to evaluate
integrals such as∫ √

5x+ 7dx or

∫
cos 4x dx.

In this section, we shall develop a simple but powerful method
for changing the variable of integration so that these integrals
can be evaluated by the basic formulas.

Example 5.7 To illustrate the procedure, consider the indefi-
nite integral, ∫ √

5x+ 7 dx.
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Let u = 5x+ 7 and calculate du = 5dx. This yields dx =
1

5
du.

∫ √
5x+ 7dx =

∫
1

5

√
u du

=
1

5

∫
u1/2du =

1

5
u3/2 (2/3) + c

=
2

15
(5x+ 7)3/2 + c.

Example 5.8 Evaluate

∫
x2 − 1

(x3 − 3x+ 1)6
dx

Solution

Let u = x3 − 3x+ 1, then

du = (3x2 − 3) dx = 3(x2 − 1) dx.

This implies
du

3
= (x2 − 1)dx. Thus by substitution, we have

∫
x2 − 1

(x3 − 3x+ 1)6
dx =

1

3

∫
u−6 du

= −1

3
· u
−5

5
+ c = − 1

15u5
+ c

= − 1

(x3 − 3x+ 1)5
+ c.

Example 5.9 Evaluate

∫
cos3 5x sin 5x dx.

Solution

Let u = cos 5x, then

du = (−5 sin 5x)dx and − 1

5
du = sin 5xdx.
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Thus, by substitution, we have∫
cos3 5x sin 5x dx = −1

5

∫
u3 du

= −1

5
· u

4

4
+ c = −cos4 5x

20
+ c.

Example 5.10 Evaluate (a).

∫
e
√
x

√
x
dx and (b).

∫
lnx

x
dx.

Solution

(a). Let u =
√
x. Then

du =
1

2
√
x
dx and 2du =

1√
x
dx.

∫
e
√
x

√
x
dx = 2

∫
eu du

= 2eu + c = 2e
√
x + c.

(b). Let u = lnx. Then

du =
1

x
dx.

Therefore, by substitution, we have∫
lnx

x
dx =

∫
u du

=
u2

2
+ c =

(lnu)2

2
+ c =

(ln (lnx))2

2
+ c.

Example 5.11 Evaluate

∫
cos 4x dx.
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Solution

Let u = 4x. Then

du = 4dx and dx =
1

4
du

Thus, by substitution, we have∫
cos 4x dx =

1

4

∫
cosu du

=
1

4
sinu+ c =

1

4
sin 4x+ c.

Example 5.12 Evaluate

∫
(2x3 + 1)7x2 dx

Solution

Let u = 2x3 + 1. Then

du = 6x2dx and
1

6
du = x2dx.

Thus, by substitution, we have∫
(2x3 + 1)7x2 dx =

1

6

∫
u7 du

=
1

6
· u

8

8
+ c

=
(2x3 + 1)8

48
+ c

Let us consider an example of definite integral with changing
variable.

Example 5.13 Evaluate

∫ 10

2

3√
5x− 1

dx.
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Solution

Let u = 5x−1, then du = 5dx. This implies dx =
1

5
du. If x = 2,

then u = 10− 1 = 9. If x = 10, then u = 50− 1 = 49.∫ 10

2

3 dx√
5x− 1

=

∫ 49

9

3

u1/2

(
1

5
du

)

=
3

5

∫ 49

9

u−1/2 du

=
3

5
× 2u1/2

1

∣∣∣∣∣
49

u=9

=
6

5
(49)1/2 − 6

5
(6)1/2

=
6(7)

5
− 6(3)

5
=

42− 18

5
=

24

5


